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Depolarization of opinions on social networks through random nudges
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Polarization of opinions has been empirically noted in many online social network platforms. Tra-
ditional models of opinion dynamics, based on statistical physics principles, do not account for the
emergence of polarization and echo chambers in online network platforms. A recently introduced
opinion dynamics model that incorporates the homophily factor — the tendency of agents to connect
with those holding similar opinions as their own — captures polarization and echo chamber effects. In
this work, we provide a non-intrusive framework for mildly nudging agents in an online community
to form random connections. This is shown to lead to significant depolarization of opinions and
decrease the echo chamber effects. Remarkably, even a mild nudge is seen to be effective in avoiding
polarization, though a large nudge leads to another undesirable effect, namely, radicalization. Fur-
ther, we obtain the optimal nudge factor to avoid the extremes of polarization and radicalization

outcomes.

I. INTRODUCTION

The information revolution [1-3] has lowered the en-
try barrier for nearly everyone to participate and con-
tribute towards shaping opinions [4-6] and even policies
on a wide gamut of issues. This has been largely aided
by the easy availability of social media infrastructure
through mobile devices. Increasingly, the collective opin-
ions expressed through various social media platforms are
thought to be one barometer of the public mood on any
contentious issue of the day. This provides an interesting
testing ground for the dynamics, and statistical physics
of interacting multi-agent systems since the online nature
of interactions provides fine-grained data for quantitative
analysis and comparison with model results. [7-13]

The analysis of opinion dynamics from the perspective
of statistical physics can be traced back to early works
in which a parallel has been drawn between an ensemble
of interacting spins — Ising model [14] — and mutual in-
fluence exerted by agents among one another [8, 15, 16].
The voter model [9, 17, 18] introduced in 1975 also has a
strong basis in a framework of interacting spins on a reg-
ular lattice but provides a simple set of rules for how the
preferences of agents change with time. In the original
voter model, each agent (spin) modifies its own opinion
based on that of a randomly chosen neighbor. These
quantitative approaches suggest that large participatory
interactions among agents might lead to the emergence
of consensus [19-21]. However, empirical results have
shown that the distribution of opinions among real peo-
ple tends to show a bimodal distribution pattern, espe-
cially on controversial issues of the day [22-26]. Over
the years, the main aim behind the variants of the basic
models has been to capture these observational trends.
Recent reviews on this topic are available in Refs. [18, 27]

Another empirical feature that could not be accounted
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for by these early models (at least by their original ver-
sion) was the phenomenon of echo chambers [28]. This
refers to a scenario in which one agent’s opinion is simi-
lar to that of the agents in their “social neighborhood,”
and one tends to reinforce the other. Lack of sufficient
engagement with opposing opinions leads to positive re-
inforcement of one’s own opinion within the circle of a
close-knit social network. Empirical evidence for this ef-
fect has been reported from several social media plat-
forms [28, 29]. This is also known to be responsible for
sustaining misinformation for a longer time on social net-
works [30, 31].

Recently, a simple model of opinion dynamics [7] was
proposed to account for the observed features from em-
pirical data. The two features often encountered in polar-
ized engagements on social networks are (a) most active
users tend to be strongly polarized, and (b) locally con-
nected agents on a network tend to have a convergence of
opinions. Both these are shown to arise through a mech-
anism of reinforcement of opinion among the agents and
the tendency of the agents to interact more with those
with similar opinions (homophily [7, 10, 32]). Even if
the model starts from an initial distribution of opinions
without clear preferences, the interactions induce the for-
mation of polarized states.

It might appear that in the case of controversial and
polarising topics, the interaction and the debate will al-
ways lead to polarized states of opinion. This outcome
leaves no room for the reconciliation of disparate opin-
ions. Contrary to what we might expect based on real-
life experiences, it might lead to a rather unfortunate
inference that interaction is the cause of polarization. In
this work, we show that if a small number of agents are
nudged, then the cycle of reinforcement of opinions can
be broken, and depolarization can be achieved. In the
context of social networks, the nudges are effected by
exposing a small fraction polarized agents to differing
opinions. We also show that overdoing this leads to rad-
icalization [33, 34], a state in which all the agents hold
the same opinion. We formulate the optimization prob-
lem that avoids both polarization and radicalization and
compute the right amount of nudge required for achieving
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this optimal scenario.

In the next section, we discuss the basic model and
motivate the random nudges in the subsequent section.
In Sec.IV, we demonstrate our results and discuss their
implications. We formulate an optimization problem, in
Sec.V, which emerges from a trade-off between the de-
polarization due to the proposed random nudges and the
tendency to move towards a radicalized state. We con-
clude with a discussion of future directions.

II. BASIC MODEL AND METHODS

To analyze polarization and to introduce possible inter-
vention methods for reducing polarization, we adapt the
recently introduced model for opinion dynamics [7]. This
model qualitatively captures a few aspects of opinion dy-
namics when agents’ opinions evolve due to interactions
in social media platforms. The model is able to repro-
duce the empirical features such as polarization and echo
chambers and the fact that more active people on social
media tend to have extreme opinions.

The model has N interacting agents, and it is assumed
that there are only two possible sides to an opinion. This
is typical of many, but not all, the issues — for example,
to allow abortion or not. Opinion on a given issue is
denoted by x;, which can take any real value in the range
(—00,00). The sign of the z; corresponds to the stance of
the agent in the corresponding issue, and the |z;| denotes
the conviction of the agent in their respective stance.
This implies that the larger the value of |z;|, the more
extreme the opinion of the agent is. The model used to
capture the evolution of opinion is activity driven [35-
37], i.e., at each time step, only active agents are allowed
to interact with other agents. Based on empirical data
[36, 38], the probability for agents to be active is chosen
to be
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where a is the activity, & is the minimum activity (chosen
in this work to be 1072), and ~y controls how steep the
function F(a) which is chosen to be v = 2.1. Agents’
opinions evolve based on their interactions with other
agents, and this information is encoded in the time-
dependent adjacency matrix A; ;(t). Further, opinion
evolution also depends on the strength of social interac-
tion K > 0 and the controversialness of the issue a > 0.
The opinion dynamics is given by the following N cou-
pled differential equations [7]

N
i =~z + K | Y Ay(t) tanh (az;) | - (2)

j=1

In this, A; ;(t) is the temporal adjacency matrix of in-
teraction at time ¢. If there is an input from agent j to
i at time ¢, than A; ;(t) = 1, and A;; = 0 otherwise.

If agent i is active at time ¢, they will interact with m
other agents, weighted by the probability F; ;. Further,
the probabilistic reciprocity factor r € [0,1] determines
the chance that an interaction is mutually influential,
i.e., Aj;(t) = Aji(t) = 1. The interaction probability
is defined to be a function of the magnitude between two
agents’ opinions.
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where 3 is the homophily factor and quantifies the ten-
dency for agents with similar opinions to interact with
each other: 8 = 0 refers to the absence of interaction
preference, and 8 > 0 implies that the agents with simi-
lar opinions are more likely to interact with one another.
Evidently, Eq. 3 is modeled as a power-law decay of con-
nection probabilities with only a small chance for agents
with opposite opinions to interact. Since most of the
interactions tend to occur between agents with similar
opinions, this can lead to the formation of echo cham-
bers.

The interaction dynamics in the model is enforced by
the activity-driven temporal network that is fully en-
coded by the parameters (g,~,m, 8, r), together with the
parameters that characterises the issue, (K, «). Asymp-
totically, this model features three distinct states in the
distribution of opinions. If the Social interaction K is suf-
ficiently small, then the opinion of every agent decays to
zero, and this state is known as the consensus state. How-
ever, if social interaction K is large but the homophily
factor 8 is small, then due to statistical fluctuations, all
the opinions either become positive or negative. This is
the state of radicalization. And the most interesting case
emerges when social interaction K and homophily factor
[ are large enough. In this case, the opinion distribution
shows a polarization state.

Apeak’

0
X

FIG. 1. A schematic to illustrate three measures of polariza-
tion. A is the distance between mean positive and negative
opinions. Apeqr denotes the distance between two peaks in
the opinion distribution, and o denotes the standard devia-
tion of the opinion distribution.
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FIG. 2. Emergent polarization (and depolarization) states in the presence (and absence) of the nudge factor. The simulations
are performed with parameters set to be in the polarization regime. (a) The agents are not nudged. Hence the polarized
state emerges. A magnification of the region around x = 0 reveals the absence of trajectories there, and the corresponding
distribution shows a bimodal distribution. (b) Network nudge is introduced with probability p = 0.01, and we find a significant
depolarization. Opinion trajectories tend to crowd around x = 0, and a unimodal distribution emerges.

III. RANDOM NUDGES AND POLARIZATION

Echo chambers are increasingly becoming more appar-
ent in online social media platforms. A generic tendency
to interact with people who hold similar opinions as ours
can lead to echo chambers, and this effect is, in turn,
amplified by the recommendation engines on social me-
dia platforms. These algorithmically driven engines rec-
ommend similar connections or content in order to keep
the users of those platforms engaged [39]. These two
features are modeled by the homophily interaction prob-
ability 8. Large values of 8 represent how closed the echo
chambers are. To disrupt the formation of echo chambers
even while keeping the platforms as engaging as possible
and without violating the users’ privacy, we adopt the
following intervention in the opinion dynamics model :
with probability p < 1, the active agents will interact
uniformly with any other agents, and with probability,
(1 —p) the active agents will interact with others accord-
ing to the homophily probability given in Eq. 3. We
call p random network nudge. As p does not depend on
the opinions of the agents, the intervention is noninva-
sive (the recommendation engine need not interpret the
opinion of the agents), and for small enough values of
p, it is hoped that the platform is still engaging while
maintaining enough diversity to ensure there is no echo
chamber. With this intervention, we propose a modified
interaction probability as
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+ (1 —p) x Py. (4)

This is used in the rest of the results shown in this paper.

Defining Polarization: Before we discuss the results,
we discuss the three quantities employed to measure the
degree of polarization based on the opinion distribution

g(z). They are defined as : (a) Polarization is measured
through A, defined as the distance between the average
of positive opinions and the average of negative opinions.
This is shown in the schematic in Fig. 1. (b) Polariza-
tion can also be measured by the distance between the
maxima in the distribution of positive and negative opin-
ions, denoted by Apeqr [40]. This is particularly useful
when the distribution clearly exhibits a bimodal charac-
ter (See Fig. 1. (¢) A gross measure of polarization could
be the standard deviation o of the entire opinion distri-
bution [39], as indicated in Fig. 1. It must be noted that
if polarization decreases as a result of the intervention
proposed in Eq. 4, then all these three quantifiers must
decrease.

IV. RESULTS

With the intervention strategy introduced in Sec. III,
we find that with sufficiently small random nudge proba-
bility p, we obtain significant depolarization in the opin-
ion distributions characterized by a unimodal distribu-
tion along with the decay of all three measures of po-
larization. To see the effects of nudge, we perform nu-
merical simulations of the basic model in Eq. 2 using
the interaction probability given in Eq. 3 and the inter-
vention model in Eq. 4. The simulations are performed
with N = 10000 agents for ¢ = 1000 time steps with
dt = 0.01. At initial time x; is uniformly chosen from a
small interval, i.e., z; € [-1,1] for ¢ = 1,2...N. The
model parameters are chosen to be « = 3, f =3, K = 3,
m =10, vy = 2.1, e = 0.01 and r = 0.5 for all the simula-
tions.

In Fig. 2, we choose parameters corresponding to
the asymptotic polarized state. It shows the contrast
between the trajectories of individual opinions and the



FIG. 3. Effect of the nudge on the opinion distribution and the structure of social interactions networks. The networks are
averaged over the last 100 time steps of simulation and are drawn using the draw function in networkx [41]. Nodes with blue
color correspond to agents with positive opinions, and red corresponds to agents with negative opinions. The saturation of the
color is mapped to the conviction of the agents; high saturation corresponds to a high level of conviction, and vice-versa. (a)
For p = 0, i.e., without a nudge, the distribution is polarized, and the network has two distinct clusters, one formed by the
agents with positive opinions and the other by the agents with negative opinions. (b) For p = 0.005, the opinion distribution
is significantly depolarized, and the network has more connections between the positive and negative opinionated clusters of
nodes. (c) For p = 0.01, we observe a unimodal distribution of opinion, and the social interactions network is now well mixed.

A depolarization state is reached.

opinion distribution without and with the application of
a nudge. In the absence of nudge (p = 0), the simulation
results in Fig. 2(a) show less trajectories with opinions
xz; ~ 0. This leads to a bimodal distribution of opinions
characteristic of a polarized state. In contrast, in Fig
2(b), a small nudge probability of p = 0.01 is applied,
and we find significantly many more trajectories with
moderate opinions. This, effectively, is seen to lead to
an absence of polarization characterized by a unimodal
distribution. The magnifications of the region around
x; = 0 and its distribution (shown in Fig. 2) reveal a
clear contrast between these two scenarios.

To examine the effect of network nudge, we analyze
the underlying time-averaged structures of the tempo-
ral interactions network. Without nudge, the (time-
dependent) interaction network has two distinct clusters;
most of the connections are among positive opinionated
agents or negative opinionated agents. There exist very
few connections between these two groups other than for
the agents with extreme opinions. This is expected since
the agents with extreme opinions are also those who tend
to be more active on social networks fora; hence on av-
erage, they form more connections. This enables them
to be relatively more connected to the agents with op-
posing opinions. These results are visually depicted in
Fig. 3 as three snapshots of evolving network diagrams.
If p = 0, no nudge is applied. In this case, as Fig 3(a)
shows, a polarized network made up of two distinct blue
and red-colored clusters is visible. Blue color corresponds
to nodes with > 0, and red color to z < 0. The opinion

distribution shown at the top confirms the existence of
polarization.
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FIG. 4. Echo chamber effect with and without the application
of random nudge. The opinion of an agent z and the mean
opinion of its nearest neighbors averaged over 20 realizations
are plotted (see Eq. 5). (a) Nudge not applied (p = 0).
The presence of two lobes is indicative of the echo chamber
effect. (b) Nudge applied (p = 0.01). A single lobe shows the
weakening of the echo chamber effect.

However, when a nudge is applied, even for the case
when the nudge probability is as small as p = 0.005,
there are still many more connections within the posi-
tively opinionated group (blue) and negative opinionated
group (red), but signs of depolarization are visible in the
network diagram (Fig. 3(b)). It is confirmed by opinion
distribution which now only shows a shallow dip in the
vicinity of = 0. For p = 0.01 displayed in Fig. 3(c),
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FIG. 5. Three measures of polarization, (a) A, (b) Apeqk, and (c) o, as a function of nudge strength p. All three polarization
parameters are averaged over the last 100 time steps and also averaged over 200 realizations. (d) shows the fraction of simulations

that lead to radicalization for different nudge strengths.

we find the network to be well mixed (large blue and red
clusters have disappeared), and this leads to a greater
degree of depolarization.

The term echo chamber describes a situation where the
beliefs or opinions of people are reinforced by interactions
among a closed group of people who hold similar opin-
ions. In recent years, this has been widely discussed in
the context of online communities [28, 42], though some
studies appear to suggest that the effects of echo cham-
bers are over-estimated [43]. To infer the presence of echo
chamber-type effects, we calculate the average opinion of
the nearest neighbors (NN) of each agent [44]. This is
denoted by

<x>NN = k;l Zaljxj’ and kl - Zaij7 (5)
j J

where a;; is the temporally aggregated adjacency matrix.
When a nudge is not applied (p = 0), a colored contour
plot of  and (z)V in Fig. 4(a) reveals two saturated
spots corresponding to the two distinct echo chambers.
The parameters used for this simulation are the same as
in Fig. 3(a). Now, when we apply a nudge with proba-
bility p = 0.01, we can observe only one saturated spot
indicating the existence of only one closed group. All the
agents are inside this closed group, and the echo cham-
ber effect is largely diluted or non-existent. This is more
clearly evident in the distributions plotted along the top
and right-side axes of Fig. 4.

V. OPTIMIZING THE NUDGE:
POLARIZATION VERSUS RADICALIZATION

To obtain a global picture of how depolarization sets
in as a function of nudge probability p, we plot the three

measures of polarization as a function of p. All three
measures, A, Apeqr and o, have been computed from the
simulation results. The results shown represent an aver-
age over the last 100 time steps of simulation and aver-
aged over 200 realizations. In Fig. 5, we observe that all
three measures of polarization decrease as the strength of
the nudge p increases. In particular, A and o are found
to decrease as a stretched exponential function exp(—p?),
and the stretching factor 7y is determined through regres-
sion to be approximately 0.3. A recent work studying the
depolarization of echo-chambers [40] considered adding
an effective noise term dependent on a random sample
of opinions to Eq. (2). While this approach succeeds
in making the opinion distribution unimodal, it increases
the width of the distribution significantly, which as a con-
sequence corresponds to an increase in extreme opinions.
In contrast, the framework of nudging the mechanism of
forming social connections in online interactions works
well in decreasing extreme opinions, and also suggests di-
rect algorithmic interventions for recommender systems.

One limitation of the intervention proposed in this
work is that for large p, we observe that in a large frac-
tion of the realizations, a radicalized state emerges. This
can be seen in Fig. 5(d), which displays the fraction of
realizations that lead to radicalization f,,q as a function
of p. It is clear that radicalization is either non-existent
or a rarity for p < 1072, while radicalization becomes the
norm for p > 1072, In many situations, radicalization is
as much undesirable as polarization.

To solve the issue of radicalization at a high value of
nudge strength, rather than nudging all the people in
the population, we nudged a fraction of the population.
We define a simple linear utility function U(A, frqq) =

3 + fraa Where A is A linearly scaled to be between 0
and 1, and f,4q is the fraction of radicalized simulations.
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FIG. 6. The heat map of the utility as a function of nudge strength and population fraction. Panel (a), (b), and (c) corresponds
to the corresponding utility of A, Apcar, and o, respectively. The red dashed curve, which is found to follow the curve p- f A= B,
(A, B = constants), demotes the optimal values of population fraction and nudge strength.

The structure of the utility function is the same for the
other two measures of polarization. In Fig. 6 we find the
optimal values of population fraction and nudge strength,
which follows the curve p - f4 = B (A, B = constants).

VI. DISCUSSION

The widespread use of the internet, and consequently,
social media platforms, has drastically altered the way
humans consume and interact with information. polar-
ization and the formation of echo chambers have been
shown to negatively impact constructive discussions and
debates — two fundamental pillars of a healthy democ-
racy. Building on the recent advances in the modeling
of opinion dynamics in social networks, in this work we
study the possibility of depolarizing a population using
a stochastic nudge.

Our results suggest that a small number of randomized
interactions, which are other dominated by homophily-
driven mechanisms, can lead to a significant reduction
in polarization. This reduction was quantitatively cap-
tured by three different measures of polarization. While
we show that minimal nudges can burst echo chambers
and lead to socially desirable distributions of opinions,
increasing the strength of this nudge can result in radi-
calization. Given this sensitivity on the nudge strength,
we show that a possible resolution is obtained if, instead
of nudging each agent, only a fraction f of the agents are

nudged. We highlight that this interplay of the nudge
strength p and the fraction f of nudged individuals leads
to an interesting optimization problem. This optimiza-
tion can help inform the fraction of individuals to be
nudged for a fixed nudge strength for optimal depolar-
ization.

We believe that the strongest case for the application of
such randomized nudges can be made to recommendation
systems. While ubiquitous, recommender algorithms are
optimized for increasing engagement, which we now know
can come at the cost of creating echo chambers, increase
in the representation of extreme ideologies, and even the
tampering of users’ preferences. In such settings, the
randomized nudges can be potentially operationalized as
the poisoning of a viewer’s watch history with a lim-
ited amount of random content, uncorrelated with the
viewer’s preferences. While there are several ethical and
legal considerations that must be accounted for before
implementing any such interventions, it certainly opens
up several interesting avenues for future research to build
on.
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