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Extreme events such as earthquakes, heatwaves, and stock market crashes can have devastating
consequences, making it crucial to predict and prepare for them. By examining the distribution of
ratios of recurrence times for extreme events, we develop a framework for studying extreme events
in weakly correlated time series. We find the distribution of the ratio closely follows the Thomae
function, in uncorrelated time series, But the distribution modifies significantly when correlation is
introduced the in the series. Our findings provide insight into the behavior of extreme events in
close proximity and the relationship between correlation and the distribution of extreme events.

I. INTRODUCTION

Questions regarding the frequency of earthquakes, ex-
treme weather events, and stock market crashes are of
interest in the study of extreme events. Predicting such
events can help us prepare for or prevent them. Extreme
value statistics is a branch of statistics that focuses on
the distribution of extremes. It has been shown that the
maxima of independent and identically distributed ran-
dom variables can only fall into one of three distributions:
Weibull, Fréchet, and Gumbel. The specific distribution
depends on the behavior of the tail of the original distri-
bution from which the iid random variables were drawn.

Although wusing independent and identically dis-
tributed random variables provides valuable insights and
a useful null model, real-time series are often more com-
plex. In particular, they often have non-vanishing auto-
correlation functions at non-zero lags, which makes them
difficult to analyze. Previous studies have attempted to
explore the different facets of extreme events in the pres-
ence of long-range memory. But these analyses for weakly
correlated time series are limited. A weakly correlated
time series is one whose autocorrelation function decays
exponentially, and such a model can be used to represent
temperature data, for which the autocorrelation function
is found to follow an exponential decay for the first few
lags. It is convenient to generate weekly correlated time
series, which provides an accessible setting for studying
the various aspects of extreme events.

To better understand and predict the occurrence of
such events, it is important to study the patterns and
regularities in their occurrence. One way to do this is
to examine the time gaps between extreme events, which
can provide insight into their recurrence patterns and
help to identify potential triggers or precursors.

Previous research on this topic has focused on the dis-
tribution of time gaps in time series with long memory,
but here we propose a new approach inspired by random
matrix theory. Specifically, we take inspiration from the
use of spacing ratios in quantum chaos, which have been
shown to provide a useful marker for identifying chaotic
behavior. In the context of extreme events, we define ra-
tios in a similar way and study their discrete probability
mass function. This allows us to develop a unique frame-

work for studying extreme events and can help to shed
light on the underlying mechanisms that govern their oc-
currence.

By examining the time gaps between extreme events
and the distribution of these gaps, we can gain valuable
insights into their occurrence patterns. This can help us
to understand the factors that contribute to the stability
of complex systems and identify potential triggers or pre-
cursors for extreme events. Overall, this work provides a
new approach for studying extreme events and can help
to advance our understanding of their underlying mech-
anisms.

Though previous attempts to find the spacing dis-
tribution manages to provide us with the behavior of
the distributions at large space limit.which corresponds
to sparsely distributed extreme events. Our framework
helps us to study extreme events when their gaps are very
close. which we find to be a characteristic of correlation.
We extensively study the distribution at ratio = 1 /2,
which corresponds to three consecutive extreme events
with similar gaps; often, the gap is just 1. We also study
the fractality of the ratio distribution, which is novel in
this context to infer correlation from the distribution.

II. MODEL AND METHODS

Consider a process x(t), which can denote the position
of a particle under Brownian motion or the temperature
of a city over time. If we sample the process with uniform
time gaps, then we will get a time-ordered set of points
{x1,x2,x3...}. This is called a time series.

If ©; € {x1,29,25...} are iids, then the autocorre-
lation function of the time series, which is defined as
C(t1,t2) = (x(t1)x(t2)) is a delta function 6(t; — t2).
But most real-world times series have nonvanishing au-
tocorrelation functions. In this paper, we primarily focus
on time series with exponential autocorrelation function
(weakly correlated) of the form e~ We adopt a well-
known method to generate exponentially correlated time
series []. A brief algorithm to generate a time series with
correlation length 7 is the following:

e 1. 1 = ry; rq is drawn from Gaussian distribution.
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from Gaussian distribution.

Extreme events — the events that exceed a predefined
threshold. for our analysis purpose we define the thresh-
old to be ¢ = (z(t))+mo. where m controls how far away
the extremes are from the typical value. We first define
recurrence time to formally study how extreme events
are distributed over time. We define i-th recurrence time
S; = tiy1 — t;, where t; is the time for i-th extreme event.
From consecutive recurrence time, we also define the ratio
of recurrence time as R; = Siiilﬁsi. As s;’s are integers,
R; only takes rational values, and by construction, it is
bounded between zero and one. In this paper, we will
focus on studying the behavior of the distribution of R
and comment on the correlation of the time series. sim-
ulation details: Time series of length 107 is generated
according to the above-mentioned algorithm. and all the
distributions are averaged over 50 realizations.

III. RESULTS

First, we study the distribution of R for uncorrelated
time series. As ratios are rations, which means they
are countable, make P(R) discrete. For large threshold
(m = 2), we find the distribution to be a scaled Thomae
function, which is defined to be zero at irrational points
and % at rational point 5. The box-counting dimension

of the distribution is calculated to be % The larger peaks
at small denominator rationals can be explained by sim-
ple numerical laws, that given a maximum size of the
integer if all the possible combinations of ratios are re-
duced to their smallest form, we find % to be formed the
maximum time, and the similar argument goes for other
small denominator fractions too.

Fig 1 shows the distribution of R for uncorrelated time
series when the threshold for extreme events is set a 1.
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FIG. 1. The distribution of R, for uncorrelated time series,
where extreme events are defined to exceed the threshold ¢ =
(z(t)) + 0. The distribution is symmetric about R = % and
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fractal in nature.

Next we systematically study the distribution of R as

we vary the correlation length (7) of the time series. We
find that though the distribution remains symmetric, cor-
relation changes the distribution in such a way that, at a
rational point R = g P(R) is not just a function of ¢, as
it was the case for uncorrelated time series. Still, the dis-
tribution depends on both p and ¢q. We also find the peak
at % to be large compared to the other peaks when the
correlation length (7), which can be explained as: when
correlation length is large the time series is highly corre-
lated, hence the time series tend for follow a trend. That
means if an event is extreme it is very likely the the next
few events will also be extreme. Now three consecutive

extreme events, leads to R = —— = 1. This is why we

+1 ~ 2
see a extremely high probability of R being % in times
series with large correlation length. Also as the corre-
lation length decreases the time series is not dominated
by consecutive extreme events, which leads ratios with
larger denominator which in turn make the distribution
to have much more non zero values at large denominator
fractions, hence the fractal dimension of the distribution
increases as the time series becomes less correlated.

We also find the effect of increasing threshold ¢ on
the P(R). As increasing threshold increases the average
spacing more rationals with larger denominators are now
possible, which reduces the probability of the ratios with
small denominators and also increases the box-counting
dimension of the distributions.

We also find P(R = 1) to decrease as the correlation
length decreases, and for small fixed threshold ¢ = {(x(t)),
it follows ﬁ = Aexp—% 4+ C, where A and C are
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constants. For fixed correlation length 7 = 3, the peak
at 1 also follow this () relation.

Our framework also allows us to connect the correla-
tion in a time series to the box-counting dimension of
the distribution, which we find to increase as correlation
length increases and as the threshold increases. We find
the box-counting dimension to follow these () relations.

Uncorrelated to correlated: Generalized
Thomae function to a modified Thomae function.
In generalized Thomae function the value of the P(R)

at any rational point % only depends ¢, For example,

The values of P(R) at 1,%,2 and 2 are the same of
uncorrelated time series. But as correlation is introduced
in the time series they no longer remain the same. We
show the relative height of P(R) for R’s with a fixed
denominator has a connection to the correlation length

of the system. which we find to to be this()/

We demonstrate the results of our findings in a real-
world temperature data set of India. We find the temper-
ature time series to have an exponential auto-correlation
function with a correlation length of 5—7. Fig x shows an
excellent match to the temperature data’s P(R) with the
simulated data of correlation length 6. The match holds
for larger thresholds, too, which can be seen in panel (b).

A generalized thomae function:
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FIG. 2. Distribution of R for time series with different correlation lengths. Panels (a), (b) and (c) correspond to the distribution
of of R of the time series with correlation length 1, 2 and 10 respectively for a fixed threshold ¢ = (z(t)) + 0. P(R = 1), is

2

much larger for highly correlated data, i.e. for the time series with large correlation lengths. The distribution seem too have
higher box counting dimensionality for less correlated times series.
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FIG. 3. For small threshold limit (i.e., Threshold for extreme
events is ¢ = (z(t))), P(R = 1) follows ﬁ = Aexp—1+4C,

TA2
where A and C are constants.

IV. DISCUSSIONS

To summarize we have used a novel framework in the
context of extreme events which is inspired by ratios of
spacing in the random matrix theory. Though in the
context of RMT the spacing ratios can take up any real

values, in the case of time series, the ratios can only take
rational values and by construction ratios only take val-
ues from 0 to 1. This framework allows us to study con-
secutive extreme events in great detail, which led to the
finding that extreme events apart from small time gaps
are markers of high correlation. From the study of the
box-counting dimension of the ratio distribution, we find
a different approach to related correlation with the fractal
dimension of the distribution. Earlier the approach re-
late to fractality and correlation was to study the fractal
dimension of the time series itself. We also introduce the
thomae function in the context of ratios studied the ef-
fect of correlation on it. and find that a large correlation
changes the height of the peaks at the same denominator
fractions, which are same for uncorrelated time series.
and Thomae function. This also provides us with yet an-
other approach to studying extreme events in correlated
time series. Together with all this, we demonstrate the
applicability of our approach in a real-world data set.

Our approach to studying ratios in the context of ex-
tremes opens up a new avenue to study ratios and ratio-
nal numbers that appear in various contexts, it has been
shown that these kinds of fractal distributions appear in
biological systems as well in the election as vote share
distributions.



